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ABSTRACT

In this paper, a collocation method which based on polynomial approxi-
mation of Taylor’s series is proposed to approximate the solution of frac-
tional pantograph differential equations (FPDE). The collocation method
with truncated Taylor’s polynomial is shown to be an applicable tech-
nique in solving FDDE. Some examples of the non-linear fractional pan-
tograph differential equations are solved and compared with the exact so-
lution to confirm the accuracy and applicability of the collocation method
with Taylor’s polynomial.

Keywords: Collocation Method, Taylor Polynomials, Fractional Pan-
tograph Differential Equations.
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1. Introduction

Fractional calculus is a calculus of derivative and integral which are widely
used to study the behaviour of real phenomena in science and engineering (see
(2013)). It becomes important in recent years as the fractional calculus
can explain the complex system with non-linear behaviour and long term mem-
ory. Fractional pantograph differential equation (FPDE) is a class of functional
differential equations with a proportional delay which is capable of modeling
the systems that subject to the memory or after effects. It has gained pop-
ularity in various areas of science and engineering, namely in material and
mechanics (see [Agarwal et al| (2010)), dynamics of viscoelastic materials (see
Benchohra et al. (2008))), wave propagation (Butzer and Westphal (2000)),
systems identification, electromagnetism (Gorenflo et al.| (2002)), visco-elastic

materials (Koeller| (1984)), signal processing, continuum and statistical (Lak-]
{shmikantham| (2008)), spherical flames (Saeedi et al.| (2013)), fluid mechanics

(Rabiei and Ordokhani| (2019)) and anomalous diffusion (Loh et al. (2018)).

Fractional models are more consistent with the real phenomena than the
integer models (Doha et al.| (2014)). It is due to the fact that fractional deriva-
tives and integrals enable to describe the memory and hereditary properties
inherent (Doha et al|(2014)). Due to its complexity of the delay argument and
fractional form, the analytical solution of FPDEs is hard to be found. Hence
there is a growing interest in researching numerical methods for solving FPDEs.
Amongst of the cited works by Isah and Phang| (2018) who proposed an op-
erational matrix of derivative with Genocchi polynomials, Heris and Javidi
who presented fractional backward differential formulas with periodic
and antiperiodic conditions and Xu and Lin| (2016) who considered a simplified
reproducing kernel method.

In this paper, a Taylor collocation method is proposed for solving FPDEs.
The solutions are obtained in terms of fractional order Taylor’s series. A matrix
representation of the collocation method of fractional pantograph differential
equation via Taylor’s polynomials are derived. The results obtained indicate
good performance compare to the existing methods in the literature. The
generalized FPDEs is given by

Du(z) = ZPT(x)u(qTx —¢)+g(x) 0<z<T (1)

subject to initial condition
m—1
Z aniu"(c) = ¢ (2)
n=0
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where ay;, ¢, ¢ are the real or complex coeflicients, while P,.(z) and g(z) are
given continuous function in the interval [0,T]. A collocation method of FPDE
with the following Taylor polynomial

N (1o’
un(@) =" I (D)e) ®

is introduced.

The remaining part of the paper is organized as follows: Section [2| defines
the fractional derivative of Riemann Liouvile and Caputo. Both derivatives are
important approaches to generalize the notion of differentiation to fractional
orders. The fundamental relation of the derivatives is carried out in Section [Bl
A method of the solution is presented in Section [d] In Section [5} examples of
FPDEs are solved and compared with the reported works that have been done
by previous researchers. Conclusion remarks are provided in Section [f]

2. Preliminaries

2.1 Fractional Derivative

The fundamental definitions and the properties of fractional calculus that
will help us to calculate the fractional derivative are presented in this section.
There are many fundamental definitions in literature for fractional derivatives
(seeKilbas et al.| (2006), Wang] (2013)). One of them which is important is Rie-
mann Liouville’s approach. Although it provides the basis of the development
of the theory in fractional calculus, it is difficult to be applied when dealing
with initial value problem. To handle such problems, Caputo’s definition which
is a modification of Riemann-Liouville definition was introduced. We first give
the definition of Riemann-Liouville integral, in which the fractional integral
operator I of a function g(z) is defined as follows.

2.2 Definition 1

The Riemann Liouville integral I of fractional order « of g(x) is given by

1

9@ = 53

/Oz(x — 1) tg(z)dr r>0,a € RT (4)
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where I'(.) is a Gamma function. The fractional derivative of order o > 0 due
to Riemann Liouville is defined by

(6% d " m—o
i@ = (1) "0 @>0m-1<a<m. @
Two basic properties of Riemann Liouville’s fractional integral I are:

I°TPg(z) = I Pg(x),a > 0,5 > 0

F(ﬂ+ 1) anrﬁ'

1°TP =
e+ B+1)

2.3 Definition 2

The fractional derivative D“ of g(z) in Caputo’s sense

el 1 v n—a—1_(n)
= — — — <
D%g(x) =) /0 (x—1) g™ (r)dr n—-1l<a<nneN (6)

The properties of Caputo fractional are:

D*C =0, C is constant

DxP =0, B> [a]

D(w — o) S (z — )=, BeNU{0},8 > [alorB €N, B> |a]

where [a] is the smallest numbers greater or equal than « and |«] is the
largest numbers less or equal than «.

3. Fundamental Matrix Relation

In this section, we propose a fundamental matrix relation of the solution
u(z) in subject to the initial condition defined by the truncated of
Taylor’s polynomial (3). In matrix form, u(z) in equation defined by a
truncated Taylor’s series can be written as

u(z) = XMpA (7)

where X is a matrix function which depend on x and defined as

X=[1 (z-o% (z-¢* (z-c - (z-c"
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1 (0)
m ? 0 s 0 Dlau(c)
0 Tam (1) o 0 DzZU(C)
1 DN—ioz
0 0 Ve DN%%)C)

The matrix representation of the function D*u(z) will become

D%u(x) = XMoA

The function D*X, can be computed as

DX =[1 D¥z—¢)® DYz—c)?* DYz—c)** - D%x—c)N9]

D(atl T(20+1 a T(3a+1 o M(Na+1 o
=[0 (F(l) : F((a+1)) (x—c) FEQa—Q—l; (z—c)® - F((JEI—l)a—?—l) (z—)™e]
= XM,
where

I'a+1
(1“(1) : ( 0 : 0
I'(2a+1
0 0 T(a+1) " 0 :
3a+1

M, = 0 0 0 T(2a+1)

. . ' . ' I(Na+1)
0 0 0 0 T T(N=1Da+1)
0 0 0 0 0

and

X=[1 (z-0° (-0 (z—c)VDa

By the same way, the matrix representation of D?*u(z) can be obtained as
D?**y(x) = XMsMjA. (8)
Similarly, for any 4*", it can be written as

D™u(r) = XM;MpA 9)
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where
T'(a+1)
! Fa(l) F(20 1)
a+
0 --- 0 oD
M; = - . : : ‘ r Nfi.+1a+1
i 00 --- 0 0 W
00 --- 0 0 0
0 0 0 0 0

4. Method of Solution

The fundamental matrix equation corresponding to equation is pre-
sented in this section. Let define collocation points as follows

Ti = 1=0,1,2,3,--- ,n—1. (10)
By using the collocation points, the system of matrix equations is trans-

formed as
m—1

(XM; Mg — Y P,XBg .z, M;M)A = G(a,) (11)
r=1
where .
W = XM;M — Y P, XB,.(z;)M (12)
r=0
1 (zog—0¢)® (vg—c)?* - (zog—c)V®
1 (z1—0)* (z1—0¢)?** - (z;—c)Ne
X=| 1 (@m-0* (z2-¢?* (22 =) |
1 (zny—0)* (zn—c)*™ (xn — )N
pr(l'O) 0 0 0
0 pr(x1) 0 0
P—- 0 0 pr(x2) 0 ’
o 0 0 po(ax)
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(grzo — €)@ 0 0 e 0
0 (qrx1 — )@ 0
B. . — 0 0 (qrae —c)?® ... 0

o

0 0 0 o gy — )N
and

Hence, equation (13) corresponding to equation can be written in the
form of

ZA =G or [Z; G); Z = [z, 43j=0,1,2,---,N (13)

Z = TM;M, — Z P,TB, .M. (14)
r=0

We produce the representation of the equation in matrix¢=0,1,--- ,m—1
Y; = X(e)MxMo = [yio yir Yiz -¥in | =[Gl (15)
The unknown values of the fractional Taylor coefficients
Dfau(c)7k = Oala"' aN

related with the approximate solution of the problem with initial condition
can be found by replacing the m'* row matrix in [Y;; ;] by the first m row
of the matrix in (12)). Hence, the augmented matrix is
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[ 200 201 202 - 20N ; g(to) ]
Z10 211 212 e ZIN ; g(tl)
220 221 222 s Z9N ; 9(t2)
= &1 | AN—m)0  E(N—m)1 E(N-m)2  EZN—-m)N 5 9(E(v—m))
Z;G] =
Yoo Yo1 Yo2 . YoN ; Co
Y10 Y11 Y12 e YIN ; G1
Y20 Y21 Y22 T YonN ; Go
L Ym-10 Ym-1)1 Ym-1)2 °°  Ym-1N Cm-1 |
(16)
In another form of matrix equation we have
ZA = G, (17)

If det Z # 0, then Z is an invertible matrix and we can write equation as
A= (Z)'G. (18)

The matrix A is uniquely determined and the solution of is determined by
truncated Taylor series

4.1 Residual Error

The present section considers the residual error for problem with initial
condition . The residual error is a way to measure the efficiencies of the
corresponding numerical method for the case where the exact result is not
known. The error function can be defined as follows

en(x) =u(z) — un(x) (19)

where u(z) and uy(z) are the exact and approximate solution of (), respec-
tively. Substituting uy(z) into leads to

m

(Dun(@) = Y- pr(@unla.x)) = g(a) + v (a) (20)
r=0
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where ¥ (z) is the perturbation term that obtained by substituting the com-
puted solution uy () into equation , ie.

On(x) = (D*un(2) Zpr 2yun(g,7)) = g(x). (21)

By subtracting equation from and using , the error function ey ()
satisfies

—In(z) = (D“‘ezv Zpr z)en(q, @ ) (22)

5. Illustrative Examples

Several numerical examples are presented in this section to illustrate the ef-
fectiveness of the collocation method with TCM for solving the FPDE. The al-
gorithm to simulate the approximate results are computed in MATLAB R2017b
with double precision and the residual analysis is carried out in Minitab 17.

Example 1

Consider the FPDE in Sherif et al.| (2014)

T 322 272~
)+

with u(0) = 0 and the exact solution is u(x) = 22 for « = 1. The exact so-
lution is unavailable for o # 1 and we need to compute the residual error to
measure the efficiency of the method. The numerical results of Example 1 are
summarised in Table [l The comparison is made with the existing results that
were reported in |Sherif et al.[(2014)). It can be seen that the simulated results
obtained by using the collocation method with Taylor’s polynomial produce
low values of the error. This indicates that the proposed method has better
efficiency compared to the reported method in [Sherif et al.| (2014)).
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Table 1: Result and Error of Example 1 with comparison with Spline Function in |[Sherif et al.
(2014)

a 3 Exact Solution  Result Error by TCM TCM Error
by Spline Spline Result
Function Function
0.01 0.0001 0 3.36E-08 0.0001 1.61E-10
0.02 0.0004  7.55819E-05 1.13E-06 0.0004 9.46E-11
=01 003 0.0009  0.000265263 1.75E-06 0.0009 6.98E-11
0.04 0.0016 0.000557029 2.13E-06 0.0016 5.64E-11
0.05 0.0025  0.000945615 2.33E-06 0.0025 4.78E-11
0.01 0.0001 0 3.24E-08 0.0001 6.41E-09
0.02 0.0004  0.000807984 1.16E-06 0.0004 3.97E-09
=02 003 0.0009  0.000273582 1.61E-06 0.0009 3.02E-09
0.04 0.0016 0.000560054 1.74E-06 0.0016 2.50E-09
0.05 0.0025 0.000932151 1.62E-06 0.0025 2.16E-09
0.01 0.0001 0 4.20E-08 0.0001 3.70E-11
0.02 0.0004 8.96535E-05 1.19E-06 0.0004 2.42E-11
a=03 003 0.0009  0.000287934 1.42E-06 0.0009 1.90E-11
0.04 0.0016  0.000570342 1.24E-06 0.0016 1.60E-11
0.05 0.0025 0.000926655 7.28E-07 0.0025 1.41E-11
0.01 0.0001 0 6.66E-08 0.0001 4.92E-12
0.02 0.0004 0.000101184 1.18E-06 0.0004 3.37TE-12
a=04 003 0.0009  0.000305454 1.13E-06 0.0009 2.72E-12
0.04 0.0016  0.000583095 5.98E-07 0.0016 2.35E-12
0.05 0.0025  0.000922591 2.61E-07 0.0025 2.10E-12

Example 2

Counsider the fractional pantograph differential equation in |Rahimkhani et al.|

2017)

D%u(z) = —%u(w) =4u (g) + 9u (g) +a? -1 (24)
67z

subject to initial condition u(0) = 1 and the exact solution is u(z) = 1+ %% +
716;‘3”2 71211259769”3 when o = 1.

Table [2| illustrates the simulated results of Example 2. For a=1, TCM shows
low values of the error, hence indicate better efficiency of the method. When
«a # 1, the exact solution of the equation is not known, thus require to com-
pute the residual as presented in Section 4] The residual error is computed
for N = 75,45,25,9 and the error obtained is used as a reference solution.
With that reference solution we exclude the absolute error (AE) when the
a = 0.95,0.75,0.50.
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Table 2: Results and Error for Example 2 with different values of a.

Results Errors
a=1 a=0.95 a=0.75 a=0.50 a=1 a=0.95 a=0.75 a=0.50
.
Exact N=75 N=45 N=25 N=9 N=75 N=45 N=25 N=9
0 1.000000 1.000000 1.000000 1.000000 1.000000 2.00E-15 6.15497E-10 1.3592E-10 1.9984E-15
0.1 2.358686 2.358686 2.636999 4.951775 25.77266673 1.42E-14 6.92957E-08 4.2414E-08 4.4180E-07
0.2 4.238932 4.238932 4.875551 10.40047 66.10073739 2.93E-14 1.28794E-07 8.9202E-08 1.1330E-06
0.3 6.697021 6.697021 7.811405 17.72148 123.43423580 4.35E-14 2.0716E-07 1.5212E-07 2.1150E-06
0.4 9.789235 9.789235 11.51221 27.06577 198.58307480 6.22E-14 3.06175E-07 2.3243E-07 3.4030E-06
0.5 13.57186 13.57186 16.04379 38.57752 292 40570 9.06E-14 4.26636E-07 3.3142E-07 5.0100E-06
0.6 18.10117 18.10117 21.4715 52.39899 405.84164530 1.21E-13 5.70542E-07 4.5018E-07 6.9530E-06
0.7 23.43345 23.43345 27.86045 68.67102 539.72632030 1.60E-13 7.39831E-07 5.8995E-07 9.2470E-06
0.8 29.62499 29.62499 35.27559 87.53317 694.95137300 2.06E-13 9.37001E-07 7.5184E-07 1.1910E-05
0.9 36.73206 36.73206 43.78173 109.1238 872.37884520 2.34E-13 1.16506E-06 9.3718E-07 1.4950E-05
1 44.81096 44.81096 53.44354 133.5800 1072.85737300 7.11E-14 1.26051E-06 1.1489E-06 1.8380E-05
Example 3

Consider the FPDE in [Rahimkhani et al.| (2017)

4 4
D%u(z) = —u(z)+0.1u gx +0.5D% g +(0.322—0.5)e™ V8% 47 (25)

for 0 < o < 1. The exact solution is given by u(xz) = ze~*. The simulated
results are illustrated in Table [3] Table [3] represents the results and the error
of Example 3. When a=1, TCM for FPDE improve the error, where a do not
have an exact solution, for those value of o we calculate the residual error.
For that problem, we calculate the residual error at a different number of
N =175,45,25,9, where we have a better residual error, we use it as a reference
solution.

Table 3: Results and Error for Example 3 with different values of a.

Results Errors
- a=1 a=0.95 a=0.75 a=0.50 a=1 a=0.95 a=0.75 a=0.50

Exact N =175 N=175 N =45 N=175 N=175 N=175 N =45 N =175
0 0 0 0 0 0 0 0 0 0
0.1 0.090484 0.090484 0.101910 0.155837 0.229542 2.78E-17 -3.60957E-07 6.33692E-07 3.07125E-06
0.2 0.163746  0.163746  0.176398  0.225374  0.271652 2.22E-16  -2.79096E-07 3.81196E-07  1.26318E-06
0.3 0.222245  0.232910  0.267522  0.289870 1.39E-16  -2.38176E-07 2.58127E-07  7.44440E-07
0.4 . 0.268128  0.275439  0.293870  0.297502 3.89E-16  -2.09831E-07 1.84823E-07  5.08182E-07
0.5 0.303265 0.303265 0.306764 0.309895 0.299293 5.00E-16 -1.91855E-07 1.36711E-07 3.76132E-07
0.6  0.329287  0.329287  0.329009  0.318765  0.297508 4.44E-16  -1.87386E-07 1.03364E-07  2.93082E-07
0.7 0.347610  0.347610  0.343864  0.322503  0.293405 3.89E-16  -1.89026E-07 7.95523E-08  2.36749E-07
0.8 0.359463  0.359463  0.352702  0.322488  0.287753 6.66E-16  -1.94398E-07 6.13491E-08  1.96391E-07
0.9 0.365913 0.365913 0.356654 0.319697 0.281052 2.78E-16 -1.87638E-07 4.44758E-08 1.66314E-07
1.0 0.367879 0.367879 0.356652 0.314844 0.273644 4.44E-15 -1.20788E-06 -1.02230E-09 1.4327E-07

In Example 1, the exact solution for the FPDE is unavailable when o =
0.1,0.2,0.3,0.4. However, FPDE solutions were not available in the literature
for computing errors to reflect the stability and accuracy of the TCM. We used
cubic polynomial to compute the residuals and mean square error (MSE) of
the FPDE at different values of alpha and matrix sizes. The estimated value
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computed through polynomials which provided least MSE, statistical residu-
als (observed value-estimated value), the highest coefficient of determination
(R?) and most precise prediction interval (PI) were considered as reference or
baseline values for comparison in example 2 and 3 separately. Based on these
baseline values, errors were computed and reported in tables 2] and [3l The ex-
ample of the polynomial with the polynomial equation, (R?) and PI was given
in Figure

Fitted Line Plot
Y45 = 0.002768 + 1.061 X
-1.092 XA2 + 0.3867 X13

—— Regression
——  esxp

R-5q 0%
03 R-Safedj) 100.0%

Y45
°

0.0 02 0.4 06 0.8 10

Figure 1: Baseline polynomial for computation of error in Example 2

Example 4
Consider the FPDE in
Da:1—2u2(g), 0<a<1,0<z<l1 (26)
u(z) =sin(z), —1<x<0.
The exact solution, when o =1 is u(x) = sin(z)

Table 4: Results and Error for Example 4 with different values of a.

a=1 a = 0.55
X Exact CWM TCM TCM
0 0 1.23E-22 3.22E-14 5.21E-13

0.125 0.123674733 1.71E-12 2.43E-14 7.65E-13
0.250 0.247403959 2.47E-12 1.62E-14 2.95E-13
0.375 0.366272529 9.36E-12 8.01E-14 5.90E-13
0.500 0.479425538 1.79E-11 4.17E-13 3.82E-11
0.625 0.585097272 1.89E-11 6.28E-13 2.85E-11
0.750 0.68163876 3.04E-12 5.27E-13 2.19E-11
0.875 0.767543502 1.64E-12 3.29E-13 3.21E-11
1.000 0.841470984  4.51E-10 1.11E-13 1.51E-10
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The exact solution is given by w(z) = sin(z). The simulated results are
illustrated in Table 4] Table [ represents the results and the error of Example
4, when a=1, TCM for FPDE improve the error as we compare with the
reference result in a # 1 do not have an exact solution, for those value of o we
calculate the residual error. For that problem, we calculate the residual error
at a different number of N = 0.55, where we have a better residual error, we
use it as a reference solution.

6. Concluding Remarks

In this work, a collocation method based on the truncating of Taylor’s
polynomial is presented to solve FPDE. It can be concluded that TCM performs
well as indicated by low values of error obtained in three illustrative examples.
The statistical technique to measure the residual error is applied when the exact
solutions are not available. Taylor’s polynomial is more preferable to embeded
in the collocation method since it is easy to program.
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